Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Conformational polymorphism of ( $E, E$ )- $N, N^{\prime}$-bis(4-nitrobenzylidene)-benzene-1,4-diamine 

Alain Collas, ${ }^{\text {a }}$ Matthias Zeller ${ }^{\text {b }}$ and Frank Blockhuys ${ }^{\text {a* }}$<br>${ }^{\text {a }}$ Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium, and ${ }^{\text {b }}$ Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663, USA<br>Correspondence e-mail: frank.blockhuys@ua.ac.be

Received 26 January 2011
Accepted 17 March 2011
Online 14 April 2011
Two polymorphs of $(E, E)$ - $N, N^{\prime}$-bis(4-nitrobenzylidene)ben-zene-1,4-diamine, $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$, (I), have been identified. In each case, the molecule lies across a crystallographic inversion centre. The supramolecular structure of the first polymorph, (I-1), features stacking based on $\pi-\pi$ interactions assisted by weak hydrogen bonds involving the nitro groups. The second polymorph, (I-2), displays a perpendicular arrangement of molecules linked via the nitro groups, combined with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Both crystal structures are compared with that of the carbon analogue $(E, E)$-1,4-bis[2-(4nitrophenyl)ethenyl]benzene, (II).

## Comment

Oligomers of $\operatorname{poly}(p$-phenylenevinylene) (PPV) and its isoelectronic counterpart poly(1,4-phenylenemethylidyne-nitrilo-1,4-phenylenenitrilomethylidyne) (PPI) constitute an interesting class of organic semiconductors, mainly because these materials display useful opto-electronic properties. Using oligomers instead of polymers has proved to be a worthwhile endeavour, as the former are far more straightforward to produce, characterize and process than the latter (Müllen \& Wegner, 1998). Also, such low-molecular-weight compounds can be subtly tailored to enhance the molecular properties desired for a specific application, by substituting them with functional groups such as electron donors and/or acceptors, thereby making optimal use of their potential as new materials for a variety of applications. However, since these materials are often used in the solid state, it is of equal importance to gain insight into their solid-state structures to correlate their structural characteristics with the experimentally determined optoelectronic properties of interest. In this paper, we present two conformational polymorphs of $(E, E)$ $N, N^{\prime}$-bis(4-nitrobenzylidene)benzene-1,4-diamine, (I), a nitrosubstituted PPI oligomer.

The first polymorph, (I-1), crystallizes in the triclinic space group $P \overline{1}$, with one molecule per unit cell lying across a
crystallographic inversion centre. Its central ring $(B)$ is twisted out of the plane defined by the peripheral nitro-substituted aromatic ring $(A)$ by $56.99(7)^{\circ}$ (Fig. 1); this is further illustrated by the torsion angles presented in Table 1. These twisted conformations are well known within this class of compounds and originate from electronic effects rather than

(I)
from steric hindrance (Collas et al., 2011). The supramolecular structure of (I-1) is based on extended chains of molecules, generated by a mutual weak hydrogen bond involving the relatively acidic aromatic atom H 5 and an O atom from the nitro group in the 4-position of a neighbouring molecule (Fig. 2 and Table 2 , entry 1 ). $\pi-\pi$ stacks of nitro-substituted rings extend along the direction of the $a$ axis (Fig. 2 and Table 2, entries 2 and 3). Within these stacks, an additional weak hydrogen bond involving atom H 10 of the central ring [ $\mathrm{C} 10-$ $\mathrm{H} 10 \cdots \mathrm{O} 1(-x,-y+1,-z+1)$ ] operates in the same direction


Figure 1
The molecular structures of the two polymorphs of (I), showing the atomnumbering schemes [note that, in (II), C8 replaces N2]. Displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms are represented by spheres of arbitrary radii and they bear the same number as the C atom to which they are attached.


Figure 2
View of the $\pi-\pi$ stacking and hydrogen bonding in polymorph (I-1). [Symmetry codes: (i) $-x+1,-y,-z+1$; (iii) $-x,-y+1,-z+1$.]


View of the $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts in polymorph (I-1). [Symmetry code: (iv) $x,-1+y, z$.]


Interactions involving the nitro group generating a herringbone pattern in polymorph (I-2). [Symmetry codes: (i) $-x-1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y+1$, z.]
(Fig. 2 and Table 2, entry 4). Finally, a mutual weak hydrogen bond, linking atom H 6 to the $\pi$-system of the central ring of another molecule, holds the stacks together (Fig. 3 and Table 2, entry 5). It is interesting to note that the most acidic H atom, H 7 , is not involved in the crystal packing.

The second polymorph, (I-2), crystallizes in the monoclinic space group $P 2_{1} / c$, with two molecules per unit cell lying across


Figure 5
View of the weak hydrogen bonds in polymorph (I-2). [Symmetry codes: (iii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $x+1,-1+y, z$.]


Figure 6
View of the relevant interactions in MUBTEJ, (II). [Symmetry codes: (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.]
crystallographic inversion centres ( $Z^{\prime}=0.5$ ). In its structure one can also easily see that the central ring is twisted out of the plane of the peripheral ring (Fig. 1), but to a lesser extent than for (I-1); the angle between the two planes through rings $A$ and $B$ is $36.29(8)^{\circ}$. As can be seen from Table 1, the torsion angle $\tau(\mathrm{C} 11-\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 7)$ is the largest contributor to the twists in both structures. The crystal packing of (I-2) is quite different from that of (I-1), as contacts between the nitro groups dominate the supramolecular structure. A T-shaped contact between the partially positively charged N atom and the partially negatively charged O atom of the nitro groups results in a herringbone pattern (Fig. 4 and Table 3, entry 1). This type of stacking is reinforced by mutual $\mathrm{N}-\mathrm{O} \cdots \pi$ interactions (Fig. 4 and Table 3, entries 2 and 3). Further stacking of the molecules is achieved by two additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving atoms H 6 and H 7 (Fig. 5 and Table 3, entries 4 and 5).

The distyrylbenzene (DSB) analogue of the title compounds, namely ( $E, E$ )-1,4-bis[2-(4-nitrophenyl)ethenyl]benzene, (II), originally reported by Pham (2009) [Cambridge Structural Database (CSD; Allen, 2002) refcode MUBTEJ], is quasi-planar, with a dihedral angle of $11.86(7)^{\circ}$ between the planes through the peripheral and central rings. The dihedral angle is only $2.29(10)^{\circ}$ in the previously reported dimethylformamide (DMF) solvate (Bartholomew et al., 2000; CSD refcode REGBEK), but as the solvent molecules interfere in the inter-oligomer contacts we will only consider the crystal packing of MUBTEJ (Fig. 6). Here, $\pi-\pi$ stacking is present but, unlike in the structure of (I-1), it occurs between the two different rings $A$ and $B$ (Table 4 , entry 1 ), which leads to a photoreactive structure that may undergo a topochemical
polymerization. Indeed, the distance between the vinyl spacers is $3.95 \AA$, which is smaller than the experimentally determined limit of $4.2 \AA$ (Schmidt, 1971). Perpendicular to these photoreactive stacks, molecules are connected through three weak hydrogen bonds (Table 4, entries 2, 3 and 4), one in which aromatic atom H 5 contacts the $\pi$-system of an adjacent ring $A$ and two in which one of the O atoms of the nitro group, O 2 , acts as an acceptor for aromatic atoms H 6 and H 7 from another molecule.

Thus, the three structures show completely different packing schemes. While in the structure of polymorph (I-1) the central ring $B$ acts as an acceptor for aromatic atom H6 and as a hydrogen-bond donor to a nitro group [C10$\mathrm{H} 10 \cdots \mathrm{O} 1(-x,-y+1,-z+1)$, Table 2 , entry 4], this ring does not take part in the crystal packing of (I-2). Besides the fact that (I-2) and (II) share the same space group, they also share two active sites on their carbon backbone; in both structures, atoms H6 and H7 are engaged in weak hydrogen bonds with the O atoms of the nitro groups of neighbouring molecules. However, in the latter only one O atom is available, while in the former both O atoms are used as acceptor sites. The presence of the N atom in (I), which results in a twist of the central ring, precludes the possibility of closer stacking and, as a result, a photosensitive supramolecular structure based on $\pi-\pi$ interactions, as seen in (II), cannot be formed.

## Experimental

Benzene-1,2-diamine ( $2.6 \mathrm{~g}, 25 \mathrm{mmol}$ ) and 4-nitrobenzaldehyde ( $3.8 \mathrm{~g}, 50 \mathrm{mmol}$ ) were dissolved in ethanol ( 200 ml ) and the resulting solution was boiled under reflux for 2 h . The resulting precipitate was filtered off, yielding a yellow-orange powder, part of which was recrystallized from acetonitrile to produce needles of (I-1) with a golden lustre. Slow evaporation of a $\mathrm{CHCl}_{3}$ solution yielded polymorph (I-2) as orange plates [m.p. (uncorrected) 512 and 502 K for (I-1) and (I-2), respectively]. UV-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\text {max }}=391 \mathrm{~nm}$ $(\log \varepsilon=4.45) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right): \delta 7.36(s, 4 \mathrm{H}, \mathrm{H} 10$ and H11), $8.10\left(d, 4 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}, \mathrm{H} 2\right.$ and H6), $8.35\left(d,{ }^{3} J=8.8 \mathrm{~Hz}\right.$, H3 and H5), 8.62 ( $s, 2 \mathrm{H}, \mathrm{H} 7$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$, TMS): $\delta 122.20$ ( C 3 and C 5 ), 124.09 ( C 10 and C 11 ), 129.46 ( C 2 and C 6 ), 141.53 (C1), 149.76 (C9), 149.76 (C4), 157.03 (C7).

## Polymorph (I-1)

## Crystal data

| $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ | $\gamma=88.071(1)^{\circ}$ |
| :--- | :--- |
| $M_{r}=374.35$ | $V=427.20(7) \AA^{3}$ |
| Triclinic, $P \overline{1}$ | $Z=1$ |
| $a=6.9357(7) \AA$ | $M o K \alpha$ radiation |
| $b=7.3036(7) \AA$ | $\mu=0.11 \mathrm{~mm}^{-1}$ |
| $c=8.8768(8) \AA$ | $T=173 \mathrm{~K}$ |
| $\alpha=73.295(1)^{\circ}$ | $0.29 \times 0.22 \times 0.1 \mathrm{~mm}$ |
| $\beta=8.707(1)^{\circ}$ |  |

## Data collection

[^0]Table 1
Dihedral angles $\left({ }^{\circ}\right)$ in the compounds under discussion.

|  | (I-1) | (I-2) | MUBTEJ, (II) | REGBEK |
| :--- | :---: | :---: | ---: | ---: |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2 / \mathrm{C} 8$ | $12.3(2)$ | $-0.5(3)$ | $9.5(2)$ | $-5.1(4)$ |
| $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 9$ | $-174.49(13)$ | $-172.48(15)$ | $179.9(1)$ | $-178.4(2)$ |
| $\mathrm{C} 11-\mathrm{C} 9-\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 7$ | $43.7(2)$ | $35.2(2)$ | $-177.6(1)$ | $-175.8(2)$ |

Table 2
Short contacts in the crystal packing of polymorph (I-1) ( $\AA{ }^{\circ},^{\circ}$ ).
The angle related to a pair of centroids is defined as the angle between the $C g I \cdots C g J$ vector and the normal to plane $I$.

| Entry | $D$ | $X$ | $A$ | $X \cdots A$ | $D-X \cdots A$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | C 5 | H 5 | $\mathrm{O1}^{\mathrm{i}}$ | 2.55 | 153 |
| 2 | $C g A$ |  | $C g A^{\mathrm{ii}}$ | $3.5212(9)$ | 15.64 |
| 3 | $C g A$ |  | $C g A^{\mathrm{iii}}$ | $3.5981(9)$ | 24.53 |
| 4 | C 10 | H 10 | $\mathrm{O1}^{\mathrm{iii}}$ | 2.52 | 155 |
| 5 | C 6 | H 6 | $C g B^{\mathrm{iv}}$ | 2.83 | 129 |

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x, y-1, z$.

Table 3
Short contacts in the crystal packing of polymorph (I-2) ( $\AA^{\circ},{ }^{\circ}$ ).

| Entry | $D$ | $X$ | $A$ | $X \cdots A$ | $D-X \cdots A$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | N1 | O1 | N1 $^{\text {ii }}$ | $2.982(2)$ | $121.20(11)$ |
| 2 | N1 | O1 | $C g A^{\text {ii }}$ | $3.5301(17)$ | 86.14 (10) |
| 3 | N1 | O2 | CgA $^{\text {ii }}$ | $3.9359(18)$ | $67.91(9)$ |
| 4 | C6 | H6 | O1 $^{1 i}$ | 2.66 | 135 |
| 5 | C7 | H7 | O2 $^{\text {iv }}$ | 2.54 | 152 |

Symmetry codes: (i) $-x-1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y+1, z ;$ (iii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $x+1$, $y-1, z$.

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.106$
$S=1.08$
1731 reflections
127 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

## Polymorph (I-2)

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=374.35$
Monoclinic, $P 2_{1} / c$
$a=6.567$ (1) А
$b=5.0227$ (7) $\AA$
$c=26.723$ (5) $\AA$
$\beta=102.558$ (4) ${ }^{\circ}$
Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (APEX2; Bruker, 2008)
$T_{\text {min }}=0.955, T_{\text {max }}=0.993$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.106$
$S=1.02$

1753 reflections

$$
V=860.4(2) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.55 \times 0.37 \times 0.07 \mathrm{~mm}$

4451 measured reflections
1753 independent reflections
1181 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.026
$$

## organic compounds

Table 4
Short contacts in the crystal packing of (II) ( $\AA{ }^{\circ}{ }^{\circ}$ ).
The angle related to a pair of centroids is defined as the angle between the $C g I \cdots C g J$ vector and the normal to plane $I$.

| Entry | $D$ | $X$ | $A$ | $X \cdots A$ | $D-X \cdots A$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | $C g A$ |  | $C g B^{\mathrm{i}}$ | $3.8933(11)$ | 29.52 |
| 2 | C5 | H5 | $C g A^{\text {ii }}$ | $2.764(15)$ | $160.2(13)$ |
| 3 | C6 | H6 | O1 $^{\text {iii }}$ | $2.659(15)$ | $146.0(11)$ |
| 4 | C7 | H7 | O1 $^{\text {iii }}$ | $2.419(15)$ | $161.8(12)$ |
| Symmetry |  |  |  |  |  |

In order to improve $R$ statistics, the high-resolution data were truncated at a resolution of $0.8 \AA$; this value was chosen based on inspection of the analysis of the variance section in the shelx.lst output file. H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

AC wishes to thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for
a predoctoral grant. The X-ray diffractometer was funded by NSF grant No. 0087210, Ohio Board of Regents grant No. CAP-491 and Youngstown State University. Financial support by the University of Antwerp under grant No. GOA-2404 is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM3102). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bartholomew, G. P., Bazan, G. C., Xianhui, B. \& Lachicotte, R. J. (2000). Chem. Mater. 12, 1422-1430.
Bruker (2008). APEX2 (Version 2008.2-4), including SAINT (Version 7.66A) and $S A D A B S$ (Version 2008/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Collas, A., De Borger, R., Amanova, T. \& Blockhuys, F. (2011). CrystEngComm, 13, 702-710.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Müllen, K. \& Wegner, G. (1998). In Electronic Materials: The Oligomer Approach. Weinheim: Wiley-VCH.
Pham, P.-T. T. (2009). Acta Cryst. E65, o1806.
Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.


[^0]:    Bruker SMART APEX CCD diffractometer
    Absorption correction: multi-scan (APEX2; Bruker, 2008)
    $T_{\text {min }}=0.973, T_{\text {max }}=0.991$
    3748 measured reflections 1731 independent reflections 1496 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

